|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- #!/usr/bin/env python3
-
- # Kosmorro - Compute The Next Ephemerides
- # Copyright (C) 2019 Jérôme Deuchnord <jerome@deuchnord.fr>
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU Affero General Public License as
- # published by the Free Software Foundation, either version 3 of the
- # License, or (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU Affero General Public License for more details.
- #
- # You should have received a copy of the GNU Affero General Public License
- # along with this program. If not, see <https://www.gnu.org/licenses/>.
-
- from abc import ABC, abstractmethod
- from typing import Union
- from datetime import datetime
-
- from numpy import pi, arcsin
-
- from skyfield.api import Topos, Time
- from skyfield.vectorlib import VectorSum as SkfPlanet
-
- from .core import get_skf_objects, get_timescale
- from .i18n import _
-
- MOON_PHASES = {
- 'NEW_MOON': _('New Moon'),
- 'WAXING_CRESCENT': _('Waxing crescent'),
- 'FIRST_QUARTER': _('First Quarter'),
- 'WAXING_GIBBOUS': _('Waxing gibbous'),
- 'FULL_MOON': _('Full Moon'),
- 'WANING_GIBBOUS': _('Waning gibbous'),
- 'LAST_QUARTER': _('Last Quarter'),
- 'WANING_CRESCENT': _('Waning crescent'),
- 'UNKNOWN': _('Unavailable')
- }
-
- EVENTS = {
- 'OPPOSITION': {'message': _('%s is in opposition')},
- 'CONJUNCTION': {'message': _('%s and %s are in conjunction')},
- 'OCCULTATION': {'message': _('%s occults %s')},
- 'MAXIMAL_ELONGATION': {'message': _("%s's largest elongation")}
- }
-
-
- class Serializable(ABC):
- @abstractmethod
- def serialize(self) -> dict:
- pass
-
-
- class MoonPhase(Serializable):
- def __init__(self, identifier: str, time: datetime = None, next_phase_date: datetime = None):
- if identifier not in MOON_PHASES.keys():
- raise ValueError('identifier parameter must be one of %s (got %s)' % (', '.join(MOON_PHASES.keys()),
- identifier))
-
- self.identifier = identifier
- self.time = time
- self.next_phase_date = next_phase_date
-
- def get_phase(self):
- return MOON_PHASES[self.identifier]
-
- def get_next_phase_name(self):
- next_identifier = self.get_next_phase()
-
- return MOON_PHASES[next_identifier]
-
- def get_next_phase(self):
- if self.identifier == 'NEW_MOON' or self.identifier == 'WAXING_CRESCENT':
- next_identifier = 'FIRST_QUARTER'
- elif self.identifier == 'FIRST_QUARTER' or self.identifier == 'WAXING_GIBBOUS':
- next_identifier = 'FULL_MOON'
- elif self.identifier == 'FULL_MOON' or self.identifier == 'WANING_GIBBOUS':
- next_identifier = 'LAST_QUARTER'
- else:
- next_identifier = 'NEW_MOON'
- return next_identifier
-
- def serialize(self) -> dict:
- return {
- 'phase': self.identifier,
- 'time': self.time.isoformat() if self.time is not None else None,
- 'next': {
- 'phase': self.get_next_phase(),
- 'time': self.next_phase_date.isoformat()
- }
- }
-
-
- class Object(Serializable):
- """
- An astronomical object.
- """
-
- def __init__(self,
- name: str,
- skyfield_name: str,
- radius: float = None):
- """
- Initialize an astronomical object
-
- :param str name: the official name of the object (may be internationalized)
- :param str skyfield_name: the internal name of the object in Skyfield library
- :param float radius: the radius (in km) of the object
- :param AsterEphemerides ephemerides: the ephemerides associated to the object
- """
- self.name = name
- self.skyfield_name = skyfield_name
- self.radius = radius
-
- def get_skyfield_object(self) -> SkfPlanet:
- return get_skf_objects()[self.skyfield_name]
-
- @abstractmethod
- def get_type(self) -> str:
- pass
-
- def get_apparent_radius(self, time: Time, from_place) -> float:
- """
- Calculate the apparent radius, in degrees, of the object from the given place at a given time.
- :param time:
- :param from_place:
- :return:
- """
- if self.radius is None:
- raise ValueError('Missing radius for %s object' % self.name)
-
- return 360 / pi * arcsin(self.radius / from_place.at(time).observe(self.get_skyfield_object()).distance().km)
-
- def serialize(self) -> dict:
- return {
- 'name': self.name,
- 'type': self.get_type(),
- 'radius': self.radius,
- }
-
-
- class Star(Object):
- def get_type(self) -> str:
- return 'star'
-
-
- class Planet(Object):
- def get_type(self) -> str:
- return 'planet'
-
-
- class DwarfPlanet(Planet):
- def get_type(self) -> str:
- return 'dwarf_planet'
-
-
- class Satellite(Object):
- def get_type(self) -> str:
- return 'satellite'
-
-
- class Event(Serializable):
- def __init__(self, event_type: str, objects: [Object], start_time: datetime,
- end_time: Union[datetime, None] = None, details: str = None):
- if event_type not in EVENTS.keys():
- accepted_types = ', '.join(EVENTS.keys())
- raise ValueError('event_type parameter must be one of the following: %s (got %s)' % (accepted_types,
- event_type))
-
- self.event_type = event_type
- self.objects = objects
- self.start_time = start_time
- self.end_time = end_time
- self.details = details
-
- def get_description(self, show_details: bool = True) -> str:
- description = EVENTS[self.event_type]['message'] % self._get_objects_name()
- if show_details and self.details is not None:
- description += ' ({:s})'.format(self.details)
- return description
-
- def _get_objects_name(self):
- if len(self.objects) == 1:
- return self.objects[0].name
-
- return tuple(object.name for object in self.objects)
-
- def serialize(self) -> dict:
- return {
- 'objects': [object.serialize() for object in self.objects],
- 'event': self.event_type,
- 'starts_at': self.start_time.isoformat(),
- 'ends_at': self.end_time.isoformat() if self.end_time is not None else None,
- 'details': self.details
- }
-
-
- def skyfield_to_moon_phase(times: [Time], vals: [int], now: Time) -> Union[MoonPhase, None]:
- tomorrow = get_timescale().utc(now.utc_datetime().year, now.utc_datetime().month, now.utc_datetime().day + 1)
-
- phases = list(MOON_PHASES.keys())
- current_phase = None
- current_phase_time = None
- next_phase_time = None
- i = 0
-
- if len(times) == 0:
- return None
-
- for i, time in enumerate(times):
- if now.utc_iso() <= time.utc_iso():
- if vals[i] in [0, 2, 4, 6]:
- if time.utc_datetime() < tomorrow.utc_datetime():
- current_phase_time = time
- current_phase = phases[vals[i]]
- else:
- i -= 1
- current_phase_time = None
- current_phase = phases[vals[i]]
- else:
- current_phase = phases[vals[i]]
-
- break
-
- for j in range(i + 1, len(times)):
- if vals[j] in [0, 2, 4, 6]:
- next_phase_time = times[j]
- break
-
- return MoonPhase(current_phase,
- current_phase_time.utc_datetime() if current_phase_time is not None else None,
- next_phase_time.utc_datetime() if next_phase_time is not None else None)
-
-
- class AsterEphemerides(Serializable):
- def __init__(self,
- rise_time: Union[datetime, None],
- culmination_time: Union[datetime, None],
- set_time: Union[datetime, None],
- aster: Object):
- self.rise_time = rise_time
- self.culmination_time = culmination_time
- self.set_time = set_time
- self.object = aster
-
- def serialize(self) -> dict:
- return {
- 'object': self.object.serialize(),
- 'rise_time': self.rise_time.isoformat() if self.rise_time is not None else None,
- 'culmination_time': self.culmination_time.isoformat() if self.culmination_time is not None else None,
- 'set_time': self.set_time.isoformat() if self.set_time is not None else None
- }
-
-
- MONTHS = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']
-
- EARTH = Planet('Earth', 'EARTH')
-
- ASTERS = [Star(_('Sun'), 'SUN', radius=696342),
- Satellite(_('Moon'), 'MOON', radius=1737.4),
- Planet(_('Mercury'), 'MERCURY', radius=2439.7),
- Planet(_('Venus'), 'VENUS', radius=6051.8),
- Planet(_('Mars'), 'MARS', radius=3396.2),
- Planet(_('Jupiter'), 'JUPITER BARYCENTER', radius=71492),
- Planet(_('Saturn'), 'SATURN BARYCENTER', radius=60268),
- Planet(_('Uranus'), 'URANUS BARYCENTER', radius=25559),
- Planet(_('Neptune'), 'NEPTUNE BARYCENTER', radius=24764),
- Planet(_('Pluto'), 'PLUTO BARYCENTER', radius=1185)]
-
-
- class Position:
- def __init__(self, latitude: float, longitude: float, aster: Object):
- self.latitude = latitude
- self.longitude = longitude
- self.aster = aster
- self._topos = None
-
- def get_planet_topos(self) -> Topos:
- if self.aster is None:
- raise TypeError('Observation planet must be set.')
-
- if self._topos is None:
- self._topos = self.aster.get_skyfield_object() + Topos(latitude_degrees=self.latitude,
- longitude_degrees=self.longitude)
-
- return self._topos
|