|
- #!/usr/bin/env python3
-
- # Kosmorro - Compute The Next Ephemerides
- # Copyright (C) 2019 Jérôme Deuchnord <jerome@deuchnord.fr>
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU Affero General Public License as
- # published by the Free Software Foundation, either version 3 of the
- # License, or (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU Affero General Public License for more details.
- #
- # You should have received a copy of the GNU Affero General Public License
- # along with this program. If not, see <https://www.gnu.org/licenses/>.
-
- import datetime
-
- from skyfield.searchlib import find_discrete, find_maxima
- from skyfield.timelib import Time
- from skyfield.constants import tau
-
- from .data import Position, AsterEphemerides, MoonPhase, Object, ASTERS, skyfield_to_moon_phase
- from .core import get_skf_objects, get_timescale, get_iau2000b
-
- RISEN_ANGLE = -0.8333
-
-
- def get_moon_phase(compute_date: datetime.date) -> MoonPhase:
- earth = get_skf_objects()['earth']
- moon = get_skf_objects()['moon']
- sun = get_skf_objects()['sun']
-
- def moon_phase_at(time: Time):
- time._nutation_angles = get_iau2000b(time)
- current_earth = earth.at(time)
- _, mlon, _ = current_earth.observe(moon).apparent().ecliptic_latlon('date')
- _, slon, _ = current_earth.observe(sun).apparent().ecliptic_latlon('date')
- return (((mlon.radians - slon.radians) // (tau / 8)) % 8).astype(int)
-
- moon_phase_at.rough_period = 7.0 # one lunar phase per week
-
- today = get_timescale().utc(compute_date.year, compute_date.month, compute_date.day)
- time1 = get_timescale().utc(compute_date.year, compute_date.month, compute_date.day - 10)
- time2 = get_timescale().utc(compute_date.year, compute_date.month, compute_date.day + 10)
-
- times, phase = find_discrete(time1, time2, moon_phase_at)
-
- return skyfield_to_moon_phase(times, phase, today)
-
-
- def get_ephemerides(date: datetime.date, position: Position) -> [AsterEphemerides]:
- ephemerides = []
-
- def get_angle(for_aster: Object):
- def fun(time: Time) -> float:
- return position.get_planet_topos().at(time).observe(for_aster.get_skyfield_object()).apparent().altaz()[0]\
- .degrees
- fun.rough_period = 1.0
- return fun
-
- def is_risen(for_aster: Object):
- def fun(time: Time) -> bool:
- return get_angle(for_aster)(time) > RISEN_ANGLE
- fun.rough_period = 0.5
- return fun
-
- start_time = get_timescale().utc(date.year, date.month, date.day)
- end_time = get_timescale().utc(date.year, date.month, date.day, 23, 59, 59)
-
- for aster in ASTERS:
- rise_times, arr = find_discrete(start_time, end_time, is_risen(aster))
- try:
- culmination_time, _ = find_maxima(start_time, end_time, f=get_angle(aster), epsilon=1./3600/24, num=12)
- culmination_time = culmination_time[0] if len(culmination_time) > 0 else None
- except ValueError:
- culmination_time = None
-
- if len(rise_times) == 2:
- rise_time = rise_times[0 if arr[0] else 1]
- set_time = rise_times[1 if not arr[1] else 0]
- else:
- rise_time = rise_times[0] if arr[0] else None
- set_time = rise_times[0] if not arr[0] else None
-
- # Convert the Time instances to Python datetime objects
- if rise_time is not None:
- rise_time = rise_time.utc_datetime().replace(microsecond=0)
-
- if culmination_time is not None:
- culmination_time = culmination_time.utc_datetime().replace(microsecond=0)
-
- if set_time is not None:
- set_time = set_time.utc_datetime().replace(microsecond=0) if set_time is not None else None
-
- ephemerides.append(AsterEphemerides(rise_time, culmination_time, set_time, aster=aster))
-
- return ephemerides
|