|
- #!/usr/bin/env python3
-
- # Kosmorro - Compute The Next Ephemerides
- # Copyright (C) 2019 Jérôme Deuchnord <jerome@deuchnord.fr>
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU Affero General Public License as
- # published by the Free Software Foundation, either version 3 of the
- # License, or (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU Affero General Public License for more details.
- #
- # You should have received a copy of the GNU Affero General Public License
- # along with this program. If not, see <https://www.gnu.org/licenses/>.
-
- from datetime import date as date_type
-
- from skyfield.errors import EphemerisRangeError
- from skyfield.timelib import Time
- from skyfield.searchlib import find_discrete, find_maxima
- from numpy import pi
-
- from .data import Event, Star, Planet, ASTERS
- from .dateutil import translate_to_timezone
- from .exceptions import OutOfRangeDateError
- from .core import get_timescale, get_skf_objects, flatten_list
-
-
- def _search_conjunction(start_time: Time, end_time: Time, timezone: int) -> [Event]:
- earth = get_skf_objects()['earth']
- aster1 = None
- aster2 = None
-
- def is_in_conjunction(time: Time):
- earth_pos = earth.at(time)
- _, aster1_lon, _ = earth_pos.observe(aster1.get_skyfield_object()).apparent().ecliptic_latlon()
- _, aster2_lon, _ = earth_pos.observe(aster2.get_skyfield_object()).apparent().ecliptic_latlon()
-
- return ((aster1_lon.radians - aster2_lon.radians) / pi % 2.0).astype('int8') == 0
-
- is_in_conjunction.rough_period = 60.0
-
- computed = []
- conjunctions = []
-
- for aster1 in ASTERS:
- # Ignore the Sun
- if isinstance(aster1, Star):
- continue
-
- for aster2 in ASTERS:
- if isinstance(aster2, Star) or aster2 == aster1 or aster2 in computed:
- continue
-
- times, is_conjs = find_discrete(start_time, end_time, is_in_conjunction)
-
- for i, time in enumerate(times):
- if is_conjs[i]:
- aster1_pos = (aster1.get_skyfield_object() - earth).at(time)
- aster2_pos = (aster2.get_skyfield_object() - earth).at(time)
- distance = aster1_pos.separation_from(aster2_pos).degrees
-
- if distance - aster2.get_apparent_radius(time, earth) < aster1.get_apparent_radius(time, earth):
- occulting_aster = [aster1,
- aster2] if aster1_pos.distance().km < aster2_pos.distance().km else [aster2,
- aster1]
-
- conjunctions.append(Event('OCCULTATION', occulting_aster,
- translate_to_timezone(time.utc_datetime(), timezone)))
- else:
- conjunctions.append(Event('CONJUNCTION', [aster1, aster2],
- translate_to_timezone(time.utc_datetime(), timezone)))
-
- computed.append(aster1)
-
- return conjunctions
-
-
- def _search_oppositions(start_time: Time, end_time: Time, timezone: int) -> [Event]:
- earth = get_skf_objects()['earth']
- sun = get_skf_objects()['sun']
- aster = None
-
- def is_oppositing(time: Time) -> [bool]:
- earth_pos = earth.at(time)
- sun_pos = earth_pos.observe(sun).apparent() # Never do this without eyes protection!
- aster_pos = earth_pos.observe(get_skf_objects()[aster.skyfield_name]).apparent()
- _, lon1, _ = sun_pos.ecliptic_latlon()
- _, lon2, _ = aster_pos.ecliptic_latlon()
- return (lon1.degrees - lon2.degrees) > 180
-
- is_oppositing.rough_period = 1.0
- events = []
-
- for aster in ASTERS:
- if not isinstance(aster, Planet) or aster.skyfield_name in ['MERCURY', 'VENUS']:
- continue
-
- times, _ = find_discrete(start_time, end_time, is_oppositing)
- for time in times:
- events.append(Event('OPPOSITION', [aster], translate_to_timezone(time.utc_datetime(), timezone)))
-
- return events
-
-
- def _search_maximal_elongations(start_time: Time, end_time: Time, timezone: int) -> [Event]:
- earth = get_skf_objects()['earth']
- sun = get_skf_objects()['sun']
- aster = None
-
- def get_elongation(time: Time):
- sun_pos = (sun - earth).at(time)
- aster_pos = (aster.get_skyfield_object() - earth).at(time)
- separation = sun_pos.separation_from(aster_pos)
- return separation.degrees
-
- get_elongation.rough_period = 1.0
-
- events = []
-
- for aster in ASTERS:
- if aster.skyfield_name not in ['MERCURY', 'VENUS']:
- continue
-
- times, elongations = find_maxima(start_time, end_time, f=get_elongation, epsilon=1./24/3600, num=12)
-
- for i, time in enumerate(times):
- elongation = elongations[i]
- events.append(Event('MAXIMAL_ELONGATION', [aster], translate_to_timezone(time.utc_datetime(), timezone),
- details='{:.3n}°'.format(elongation)))
-
- return events
-
-
- def search_events(date: date_type, timezone: int = 0) -> [Event]:
- start_time = get_timescale().utc(date.year, date.month, date.day, -timezone)
- end_time = get_timescale().utc(date.year, date.month, date.day + 1, -timezone)
-
- try:
- return sorted(flatten_list([
- _search_oppositions(start_time, end_time, timezone),
- _search_conjunction(start_time, end_time, timezone),
- _search_maximal_elongations(start_time, end_time, timezone)
- ]), key=lambda event: event.start_time)
- except EphemerisRangeError as error:
- start_date = translate_to_timezone(error.start_time.utc_datetime(), timezone)
- end_date = translate_to_timezone(error.end_time.utc_datetime(), timezone)
-
- start_date = date_type(start_date.year, start_date.month, start_date.day)
- end_date = date_type(end_date.year, end_date.month, end_date.day)
-
- raise OutOfRangeDateError(start_date, end_date)
|