|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- #!/usr/bin/env python3
-
- # Kosmorrolib - The Library To Compute Your Ephemerides
- # Copyright (C) 2021 Jérôme Deuchnord <jerome@deuchnord.fr>
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU Affero General Public License as
- # published by the Free Software Foundation, either version 3 of the
- # License, or (at your option) any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU Affero General Public License for more details.
- #
- # You should have received a copy of the GNU Affero General Public License
- # along with this program. If not, see <https://www.gnu.org/licenses/>.
-
- from abc import ABC, abstractmethod
- from typing import Union
- from datetime import datetime, timezone
- from math import asin
-
- from skyfield.api import Topos, Time, Angle
- from skyfield.vectorlib import VectorSum as SkfPlanet
-
- from .core import get_skf_objects, get_timescale
- from .enum import MoonPhaseType, EventType, ObjectIdentifier, ObjectType
-
-
- class Serializable(ABC):
- @abstractmethod
- def serialize(self) -> dict:
- pass
-
-
- class MoonPhase(Serializable):
- def __init__(
- self,
- phase_type: MoonPhaseType,
- time: datetime = None,
- next_phase_date: datetime = None,
- ):
- self.phase_type = phase_type
- self.time = time
- self.next_phase_date = next_phase_date
-
- def __repr__(self):
- return "<MoonPhase phase_type=%s time=%s next_phase_date=%s>" % (
- self.phase_type,
- self.time,
- self.next_phase_date,
- )
-
- def get_next_phase(self):
- """Helper to get the Moon phase that follows the one described by the object.
-
- If the current Moon phase is New Moon or Waxing crescent, the next one will be First Quarter:
-
- >>> moon_phase = MoonPhase(MoonPhaseType.NEW_MOON)
- >>> moon_phase.get_next_phase()
- <MoonPhaseType.FIRST_QUARTER: 2>
-
- >>> moon_phase = MoonPhase(MoonPhaseType.NEW_MOON)
- >>> moon_phase.get_next_phase()
- <MoonPhaseType.FIRST_QUARTER: 2>
-
- If the current Moon phase is First Quarter or Waxing gibbous, the next one will be Full Moon:
-
- >>> moon_phase = MoonPhase(MoonPhaseType.FIRST_QUARTER)
- >>> moon_phase.get_next_phase()
- <MoonPhaseType.FULL_MOON: 4>
-
- >>> moon_phase = MoonPhase(MoonPhaseType.WAXING_GIBBOUS)
- >>> moon_phase.get_next_phase()
- <MoonPhaseType.FULL_MOON: 4>
-
- If the current Moon phase is Full Moon or Waning gibbous, the next one will be Last Quarter:
-
- >>> moon_phase = MoonPhase(MoonPhaseType.FULL_MOON)
- >>> moon_phase.get_next_phase()
- <MoonPhaseType.LAST_QUARTER: 6>
-
- >>> moon_phase = MoonPhase(MoonPhaseType.WANING_GIBBOUS)
- >>> moon_phase.get_next_phase()
- <MoonPhaseType.LAST_QUARTER: 6>
-
- If the current Moon phase is Last Quarter Moon or Waning crescent, the next one will be New Moon:
-
- >>> moon_phase = MoonPhase(MoonPhaseType.LAST_QUARTER)
- >>> moon_phase.get_next_phase()
- <MoonPhaseType.NEW_MOON: 0>
-
- >>> moon_phase = MoonPhase(MoonPhaseType.WANING_CRESCENT)
- >>> moon_phase.get_next_phase()
- <MoonPhaseType.NEW_MOON: 0>
- """
- if self.phase_type in [MoonPhaseType.NEW_MOON, MoonPhaseType.WAXING_CRESCENT]:
- return MoonPhaseType.FIRST_QUARTER
- if self.phase_type in [
- MoonPhaseType.FIRST_QUARTER,
- MoonPhaseType.WAXING_GIBBOUS,
- ]:
- return MoonPhaseType.FULL_MOON
- if self.phase_type in [MoonPhaseType.FULL_MOON, MoonPhaseType.WANING_GIBBOUS]:
- return MoonPhaseType.LAST_QUARTER
-
- return MoonPhaseType.NEW_MOON
-
- def serialize(self) -> dict:
- return {
- "phase": self.phase_type.name,
- "time": self.time.isoformat() if self.time is not None else None,
- "next": {
- "phase": self.get_next_phase().name,
- "time": self.next_phase_date.isoformat(),
- },
- }
-
-
- class Object(Serializable):
- """
- An astronomical object.
- """
-
- def __init__(
- self,
- identifier: ObjectIdentifier,
- skyfield_object: SkfPlanet,
- radius: float = None,
- ):
- """
- Initialize an astronomical object
-
- :param ObjectIdentifier identifier: the official name of the object (may be internationalized)
- :param str skyfield_object: the object from Skyfield library
- :param float radius: the radius (in km) of the object
- """
- self.identifier = identifier
- self.skyfield_object = skyfield_object
- self.radius = radius
-
- def __repr__(self):
- return "<Object type=%s name=%s />" % (
- self.get_type().name,
- self.identifier.name,
- )
-
- @abstractmethod
- def get_type(self) -> ObjectType:
- pass
-
- def get_apparent_radius(self, for_date: Union[Time, datetime]) -> Angle:
- """Calculate the apparent radius, in degrees, of the object from the given place at a given time.
-
- **Warning:** this is an internal function, not intended for use by end-developers.
-
- For an easier usage, this method accepts datetime and Skyfield's Time objects:
-
- >>> sun = ASTERS[0]
- >>> sun.get_apparent_radius(datetime(2021, 6, 9, tzinfo=timezone.utc))
- <Angle 00deg 31' 31.6">
-
- >>> sun.get_apparent_radius(get_timescale().utc(2021, 6, 9))
- <Angle 00deg 31' 31.6">
-
- Source of the algorithm: https://rhodesmill.org/skyfield/examples.html#what-is-the-angular-diameter-of-a-planet-given-its-radius
-
- :param for_date: the date for which the apparent radius has to be returned
- :return: an object representing a Skyfield angle
- """
- if isinstance(for_date, datetime):
- for_date = get_timescale().from_datetime(for_date)
-
- ra, dec, distance = (
- EARTH.skyfield_object.at(for_date)
- .observe(self.skyfield_object)
- .apparent()
- .radec()
- )
-
- return Angle(radians=asin(self.radius / distance.km) * 2.0)
-
- def serialize(self) -> dict:
- """Serialize the given object
-
- >>> planet = Planet(ObjectIdentifier.MARS, "MARS")
- >>> planet.serialize()
- {'identifier': 'MARS', 'type': 'PLANET', 'radius': None}
- """
- return {
- "identifier": self.identifier.name,
- "type": self.get_type().name,
- "radius": self.radius,
- }
-
-
- class Star(Object):
- def get_type(self) -> ObjectType:
- return ObjectType.STAR
-
-
- class Planet(Object):
- def get_type(self) -> ObjectType:
- return ObjectType.PLANET
-
-
- class DwarfPlanet(Planet):
- def get_type(self) -> ObjectType:
- return ObjectType.DWARF_PLANET
-
-
- class Satellite(Object):
- def get_type(self) -> ObjectType:
- return ObjectType.SATELLITE
-
-
- class Event(Serializable):
- def __init__(
- self,
- event_type: EventType,
- objects: [Object],
- start_time: datetime,
- end_time: Union[datetime, None] = None,
- details: {str: any} = None,
- ):
- self.event_type = event_type
- self.objects = objects
- self.start_time = start_time
- self.end_time = end_time
- self.details = details
-
- def __repr__(self):
- return "<Event type=%s objects=%s start=%s end=%s details=%s />" % (
- self.event_type.name,
- self.objects,
- self.start_time,
- self.end_time,
- self.details,
- )
-
- def get_description(self, show_details: bool = True) -> str:
- description = self.event_type.value % self._get_objects_name()
- if show_details and self.details is not None:
- description += " ({:s})".format(self.details)
- return description
-
- def _get_objects_name(self):
- if len(self.objects) == 1:
- return self.objects[0].name
-
- return tuple(object.name for object in self.objects)
-
- def serialize(self) -> dict:
- return {
- "objects": [object.serialize() for object in self.objects],
- "EventType": self.event_type.name,
- "starts_at": self.start_time.isoformat(),
- "ends_at": self.end_time.isoformat() if self.end_time is not None else None,
- "details": self.details,
- }
-
-
- class AsterEphemerides(Serializable):
- def __init__(
- self,
- rise_time: Union[datetime, None],
- culmination_time: Union[datetime, None],
- set_time: Union[datetime, None],
- aster: Object,
- ):
- self.rise_time = rise_time
- self.culmination_time = culmination_time
- self.set_time = set_time
- self.object = aster
-
- def __repr__(self):
- return (
- "<AsterEphemerides rise_time=%s culmination_time=%s set_time=%s aster=%s>"
- % (self.rise_time, self.culmination_time, self.set_time, self.object)
- )
-
- def serialize(self) -> dict:
- return {
- "object": self.object.serialize(),
- "rise_time": self.rise_time.isoformat()
- if self.rise_time is not None
- else None,
- "culmination_time": self.culmination_time.isoformat()
- if self.culmination_time is not None
- else None,
- "set_time": self.set_time.isoformat()
- if self.set_time is not None
- else None,
- }
-
-
- EARTH = Planet(ObjectIdentifier.EARTH, get_skf_objects()["EARTH"])
-
- ASTERS = [
- Star(ObjectIdentifier.SUN, get_skf_objects()["SUN"], radius=696342),
- Satellite(ObjectIdentifier.MOON, get_skf_objects()["MOON"], radius=1737.4),
- Planet(ObjectIdentifier.MERCURY, get_skf_objects()["MERCURY"], radius=2439.7),
- Planet(ObjectIdentifier.VENUS, get_skf_objects()["VENUS"], radius=6051.8),
- Planet(ObjectIdentifier.MARS, get_skf_objects()["MARS"], radius=3396.2),
- Planet(
- ObjectIdentifier.JUPITER, get_skf_objects()["JUPITER BARYCENTER"], radius=71492
- ),
- Planet(
- ObjectIdentifier.SATURN, get_skf_objects()["SATURN BARYCENTER"], radius=60268
- ),
- Planet(
- ObjectIdentifier.URANUS, get_skf_objects()["URANUS BARYCENTER"], radius=25559
- ),
- Planet(
- ObjectIdentifier.NEPTUNE, get_skf_objects()["NEPTUNE BARYCENTER"], radius=24764
- ),
- Planet(ObjectIdentifier.PLUTO, get_skf_objects()["PLUTO BARYCENTER"], radius=1185),
- ]
-
-
- def get_aster(identifier: ObjectIdentifier) -> Object:
- """Return the aster with the given identifier
-
- >>> get_aster(ObjectIdentifier.SATURN)
- <Object type=PLANET name=SATURN />
-
- You can also use it to get the `EARTH` object, even though it has its own constant:
- <Object type=PLANET name=EARTH />
- """
- if identifier == ObjectIdentifier.EARTH:
- return EARTH
-
- for aster in ASTERS:
- if aster.identifier == identifier:
- return aster
-
-
- class Position:
- def __init__(self, latitude: float, longitude: float):
- self.latitude = latitude
- self.longitude = longitude
- self._topos = None
-
- def get_planet_topos(self) -> Topos:
- if self._topos is None:
- self._topos = EARTH.skyfield_object + Topos(
- latitude_degrees=self.latitude, longitude_degrees=self.longitude
- )
-
- return self._topos
|