#!/usr/bin/env python3 import datetime from typing import Union from skyfield.searchlib import find_discrete, find_maxima from skyfield.timelib import Time from skyfield.constants import tau from skyfield.errors import EphemerisRangeError from .model import Position, AsterEphemerides, MoonPhase, Object, ASTERS from .dateutil import translate_to_timezone from .core import get_skf_objects, get_timescale, get_iau2000b from .enum import MoonPhaseType from .exceptions import OutOfRangeDateError RISEN_ANGLE = -0.8333 def _get_skyfield_to_moon_phase( times: [Time], vals: [int], now: Time, timezone: int ) -> Union[MoonPhase, None]: tomorrow = get_timescale().utc( now.utc_datetime().year, now.utc_datetime().month, now.utc_datetime().day + 1 ) phases = list(MoonPhaseType) current_phase = None current_phase_time = None next_phase_time = None i = 0 if len(times) == 0: return None for i, time in enumerate(times): if now.utc_iso() <= time.utc_iso(): if vals[i] in [0, 2, 4, 6]: if time.utc_datetime() < tomorrow.utc_datetime(): current_phase_time = time current_phase = phases[vals[i]] else: i -= 1 current_phase_time = None current_phase = phases[vals[i]] else: current_phase = phases[vals[i]] break for j in range(i + 1, len(times)): if vals[j] in [0, 2, 4, 6]: next_phase_time = times[j] break return MoonPhase( current_phase, translate_to_timezone(current_phase_time.utc_datetime(), timezone) if current_phase_time is not None else None, translate_to_timezone(next_phase_time.utc_datetime(), timezone) if next_phase_time is not None else None, ) def get_moon_phase( for_date: datetime.date = datetime.date.today(), timezone: int = 0 ) -> MoonPhase: """Calculate and return the moon phase for the given date, adjusted to the given timezone if any. Get the moon phase for the 27 March, 2021: >>> get_moon_phase(datetime.date.fromisoformat("2021-03-27")) Get the moon phase for the 27 March, 2021, in the UTC+2 timezone: >>> get_moon_phase(datetime.date.fromisoformat("2021-03-27"), timezone=2) """ earth = get_skf_objects()["earth"] moon = get_skf_objects()["moon"] sun = get_skf_objects()["sun"] def moon_phase_at(time: Time): time._nutation_angles = get_iau2000b(time) current_earth = earth.at(time) _, mlon, _ = current_earth.observe(moon).apparent().ecliptic_latlon("date") _, slon, _ = current_earth.observe(sun).apparent().ecliptic_latlon("date") return (((mlon.radians - slon.radians) // (tau / 8)) % 8).astype(int) moon_phase_at.rough_period = 7.0 # one lunar phase per week today = get_timescale().utc(for_date.year, for_date.month, for_date.day) time1 = get_timescale().utc(for_date.year, for_date.month, for_date.day - 10) time2 = get_timescale().utc(for_date.year, for_date.month, for_date.day + 10) try: times, phase = find_discrete(time1, time2, moon_phase_at) except EphemerisRangeError as error: start = translate_to_timezone(error.start_time.utc_datetime(), timezone) end = translate_to_timezone(error.end_time.utc_datetime(), timezone) start = datetime.date(start.year, start.month, start.day) + datetime.timedelta( days=12 ) end = datetime.date(end.year, end.month, end.day) - datetime.timedelta(days=12) raise OutOfRangeDateError(start, end) from error return _get_skyfield_to_moon_phase(times, phase, today, timezone) def get_ephemerides( position: Position, date: datetime.date = datetime.date.today(), timezone: int = 0 ) -> [AsterEphemerides]: """Compute and return the ephemerides for the given position and date, adjusted to the given timezone if any. Compute the ephemerides for June 9th, 2021: >>> pos = Position(50.5824, 3.0624) >>> get_ephemerides(pos, datetime.date(2021, 6, 9)) [>, >, >, >, >, >, >, >, >, >] Compute the ephemerides for June 9th, 2021: >>> get_ephemerides(pos, datetime.date(2021, 6, 9), timezone=2) [>, >, >, >, >, >, >, >, >, >] """ ephemerides = [] def get_angle(for_aster: Object): def fun(time: Time) -> float: return ( position.get_planet_topos() .at(time) .observe(for_aster.get_skyfield_object()) .apparent() .altaz()[0] .degrees ) fun.rough_period = 1.0 return fun def is_risen(for_aster: Object): def fun(time: Time) -> bool: return get_angle(for_aster)(time) > RISEN_ANGLE fun.rough_period = 0.5 return fun start_time = get_timescale().utc(date.year, date.month, date.day, -timezone) end_time = get_timescale().utc( date.year, date.month, date.day, 23 - timezone, 59, 59 ) try: for aster in ASTERS: rise_times, arr = find_discrete(start_time, end_time, is_risen(aster)) try: culmination_time, _ = find_maxima( start_time, end_time, f=get_angle(aster), epsilon=1.0 / 3600 / 24, num=12, ) culmination_time = ( culmination_time[0] if len(culmination_time) > 0 else None ) except ValueError: culmination_time = None if len(rise_times) == 2: rise_time = rise_times[0 if arr[0] else 1] set_time = rise_times[1 if not arr[1] else 0] else: rise_time = rise_times[0] if arr[0] else None set_time = rise_times[0] if not arr[0] else None # Convert the Time instances to Python datetime objects if rise_time is not None: rise_time = translate_to_timezone( rise_time.utc_datetime().replace(microsecond=0), to_tz=timezone ) if culmination_time is not None: culmination_time = translate_to_timezone( culmination_time.utc_datetime().replace(microsecond=0), to_tz=timezone, ) if set_time is not None: set_time = translate_to_timezone( set_time.utc_datetime().replace(microsecond=0), to_tz=timezone ) ephemerides.append( AsterEphemerides(rise_time, culmination_time, set_time, aster=aster) ) except EphemerisRangeError as error: start = translate_to_timezone(error.start_time.utc_datetime(), timezone) end = translate_to_timezone(error.end_time.utc_datetime(), timezone) start = datetime.date(start.year, start.month, start.day + 1) end = datetime.date(end.year, end.month, end.day - 1) raise OutOfRangeDateError(start, end) from error return ephemerides