A library that computes the ephemerides.
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
 
 

362 lignes
12 KiB

  1. #!/usr/bin/env python3
  2. from datetime import date
  3. from skyfield.errors import EphemerisRangeError
  4. from skyfield.timelib import Time
  5. from skyfield.searchlib import find_discrete, find_maxima, find_minima
  6. from skyfield import almanac
  7. from numpy import pi
  8. from kosmorrolib.model import Event, Star, Planet, ASTERS
  9. from kosmorrolib.dateutil import translate_to_timezone
  10. from kosmorrolib.enum import EventType, ObjectIdentifier, SeasonType
  11. from kosmorrolib.exceptions import OutOfRangeDateError
  12. from kosmorrolib.core import get_timescale, get_skf_objects, flatten_list
  13. def _search_conjunction(start_time: Time, end_time: Time, timezone: int) -> [Event]:
  14. """Function to search conjunction.
  15. **Warning:** this is an internal function, not intended for use by end-developers.
  16. Will return MOON and VENUS opposition on 2021-06-12:
  17. >>> conjunction = _search_conjunction(get_timescale().utc(2021,6,12),get_timescale().utc(2021,6,13),0)
  18. >>> len(conjunction)
  19. 1
  20. >>> conjunction[0].objects
  21. [<Object type=SATELLITE name=MOON />, <Object type=PLANET name=VENUS />]
  22. Will return nothing if no conjunction happens:
  23. >>> _search_conjunction(get_timescale().utc(2021,6,17),get_timescale().utc(2021,6,18),0)
  24. []
  25. """
  26. earth = get_skf_objects()["earth"]
  27. aster1 = None
  28. aster2 = None
  29. def is_in_conjunction(time: Time):
  30. earth_pos = earth.at(time)
  31. _, aster1_lon, _ = (
  32. earth_pos.observe(aster1.get_skyfield_object()).apparent().ecliptic_latlon()
  33. )
  34. _, aster2_lon, _ = (
  35. earth_pos.observe(aster2.get_skyfield_object()).apparent().ecliptic_latlon()
  36. )
  37. return ((aster1_lon.radians - aster2_lon.radians) / pi % 2.0).astype(
  38. "int8"
  39. ) == 0
  40. is_in_conjunction.rough_period = 60.0
  41. computed = []
  42. conjunctions = []
  43. for aster1 in ASTERS:
  44. # Ignore the Sun
  45. if isinstance(aster1, Star):
  46. continue
  47. for aster2 in ASTERS:
  48. if isinstance(aster2, Star) or aster2 == aster1 or aster2 in computed:
  49. continue
  50. times, is_conjs = find_discrete(start_time, end_time, is_in_conjunction)
  51. for i, time in enumerate(times):
  52. if is_conjs[i]:
  53. aster1_pos = (aster1.get_skyfield_object() - earth).at(time)
  54. aster2_pos = (aster2.get_skyfield_object() - earth).at(time)
  55. distance = aster1_pos.separation_from(aster2_pos).degrees
  56. if distance - aster2.get_apparent_radius(
  57. time, earth
  58. ) < aster1.get_apparent_radius(time, earth):
  59. occulting_aster = (
  60. [aster1, aster2]
  61. if aster1_pos.distance().km < aster2_pos.distance().km
  62. else [aster2, aster1]
  63. )
  64. conjunctions.append(
  65. Event(
  66. EventType.OCCULTATION,
  67. occulting_aster,
  68. translate_to_timezone(time.utc_datetime(), timezone),
  69. )
  70. )
  71. else:
  72. conjunctions.append(
  73. Event(
  74. EventType.CONJUNCTION,
  75. [aster1, aster2],
  76. translate_to_timezone(time.utc_datetime(), timezone),
  77. )
  78. )
  79. computed.append(aster1)
  80. return conjunctions
  81. def _search_oppositions(start_time: Time, end_time: Time, timezone: int) -> [Event]:
  82. """Function to search oppositions.
  83. **Warning:** this is an internal function, not intended for use by end-developers.
  84. Will return Mars opposition on 2020-10-13:
  85. >>> oppositions = _search_oppositions(get_timescale().utc(2020, 10, 13), get_timescale().utc(2020, 10, 14), 0)
  86. >>> len(oppositions)
  87. 1
  88. >>> oppositions[0].objects[0]
  89. <Object type=PLANET name=MARS />
  90. Will return nothing if no opposition happens:
  91. >>> _search_oppositions(get_timescale().utc(2021, 3, 20), get_timescale().utc(2021, 3, 21), 0)
  92. []
  93. """
  94. earth = get_skf_objects()["earth"]
  95. sun = get_skf_objects()["sun"]
  96. aster = None
  97. def is_oppositing(time: Time) -> [bool]:
  98. diff = get_angle(time)
  99. return diff > 180
  100. def get_angle(time: Time):
  101. earth_pos = earth.at(time)
  102. sun_pos = earth_pos.observe(
  103. sun
  104. ).apparent() # Never do this without eyes protection!
  105. aster_pos = earth_pos.observe(get_skf_objects()[aster.skyfield_name]).apparent()
  106. _, lon1, _ = sun_pos.ecliptic_latlon()
  107. _, lon2, _ = aster_pos.ecliptic_latlon()
  108. return lon1.degrees - lon2.degrees
  109. is_oppositing.rough_period = 1.0
  110. events = []
  111. for aster in ASTERS:
  112. if not isinstance(aster, Planet) or aster.identifier in [
  113. ObjectIdentifier.MERCURY,
  114. ObjectIdentifier.VENUS,
  115. ]:
  116. continue
  117. times, _ = find_discrete(start_time, end_time, is_oppositing)
  118. for time in times:
  119. if get_angle(time) < 0:
  120. # If the angle is negative, then it is actually a false positive.
  121. # Just ignoring it.
  122. continue
  123. events.append(
  124. Event(
  125. EventType.OPPOSITION,
  126. [aster],
  127. translate_to_timezone(time.utc_datetime(), timezone),
  128. )
  129. )
  130. return events
  131. def _search_maximal_elongations(
  132. start_time: Time, end_time: Time, timezone: int
  133. ) -> [Event]:
  134. earth = get_skf_objects()["earth"]
  135. sun = get_skf_objects()["sun"]
  136. aster = None
  137. def get_elongation(time: Time):
  138. sun_pos = (sun - earth).at(time)
  139. aster_pos = (aster.get_skyfield_object() - earth).at(time)
  140. separation = sun_pos.separation_from(aster_pos)
  141. return separation.degrees
  142. get_elongation.rough_period = 1.0
  143. events = []
  144. for aster in ASTERS:
  145. if aster.skyfield_name not in ["MERCURY", "VENUS"]:
  146. continue
  147. times, elongations = find_maxima(
  148. start_time, end_time, f=get_elongation, epsilon=1.0 / 24 / 3600, num=12
  149. )
  150. for i, time in enumerate(times):
  151. elongation = round(elongations[i], 1)
  152. events.append(
  153. Event(
  154. EventType.MAXIMAL_ELONGATION,
  155. [aster],
  156. translate_to_timezone(time.utc_datetime(), timezone),
  157. details={"deg": elongation},
  158. )
  159. )
  160. return events
  161. def _get_moon_distance():
  162. earth = get_skf_objects()["earth"]
  163. moon = get_skf_objects()["moon"]
  164. def get_distance(time: Time):
  165. earth_pos = earth.at(time)
  166. moon_pos = earth_pos.observe(moon).apparent()
  167. return moon_pos.distance().au
  168. get_distance.rough_period = 1.0
  169. return get_distance
  170. def _search_moon_apogee(start_time: Time, end_time: Time, timezone: int) -> [Event]:
  171. moon = ASTERS[1]
  172. events = []
  173. times, _ = find_maxima(
  174. start_time, end_time, f=_get_moon_distance(), epsilon=1.0 / 24 / 60
  175. )
  176. for time in times:
  177. events.append(
  178. Event(
  179. EventType.MOON_APOGEE,
  180. [moon],
  181. translate_to_timezone(time.utc_datetime(), timezone),
  182. )
  183. )
  184. return events
  185. def _search_moon_perigee(start_time: Time, end_time: Time, timezone: int) -> [Event]:
  186. moon = ASTERS[1]
  187. events = []
  188. times, _ = find_minima(
  189. start_time, end_time, f=_get_moon_distance(), epsilon=1.0 / 24 / 60
  190. )
  191. for time in times:
  192. events.append(
  193. Event(
  194. EventType.MOON_PERIGEE,
  195. [moon],
  196. translate_to_timezone(time.utc_datetime(), timezone),
  197. )
  198. )
  199. return events
  200. def _search_earth_season_change(
  201. start_time: Time, end_time: Time, timezone: int
  202. ) -> [Event]:
  203. """Function to find earth season change event.
  204. **Warning:** this is an internal function, not intended for use by end-developers.
  205. Will return JUNE SOLSTICE on 2020/06/20:
  206. >>> season_change = _search_earth_season_change(get_timescale().utc(2020, 6, 20), get_timescale().utc(2020, 6, 21), 0)
  207. >>> len(season_change)
  208. 1
  209. >>> season_change[0].event_type
  210. <EventType.SEASON_CHANGE: 7>
  211. >>> season_change[0].details
  212. {'season': <SeasonType.JUNE_SOLSTICE: 1>}
  213. Will return nothing if there is no season change event in the period of time being calculated:
  214. >>> _search_earth_season_change(get_timescale().utc(2021, 6, 17), get_timescale().utc(2021, 6, 18), 0)
  215. []
  216. """
  217. events = []
  218. event_time, event_id = almanac.find_discrete(
  219. start_time, end_time, almanac.seasons(get_skf_objects())
  220. )
  221. if len(event_time) == 0:
  222. return []
  223. events.append(
  224. Event(
  225. EventType.SEASON_CHANGE,
  226. [],
  227. translate_to_timezone(event_time.utc_datetime()[0], timezone),
  228. details={"season": SeasonType(event_id[0])},
  229. )
  230. )
  231. return events
  232. def get_events(for_date: date = date.today(), timezone: int = 0) -> [Event]:
  233. """Calculate and return a list of events for the given date, adjusted to the given timezone if any.
  234. Find events that happen on April 4th, 2020 (show hours in UTC):
  235. >>> get_events(date(2020, 4, 4))
  236. [<Event type=CONJUNCTION objects=[<Object type=PLANET name=MERCURY />, <Object type=PLANET name=NEPTUNE />] start=2020-04-04 01:14:39.063308+00:00 end=None details=None />]
  237. Find events that happen on April 4th, 2020 (show timezones in UTC+2):
  238. >>> get_events(date(2020, 4, 4), 2)
  239. [<Event type=CONJUNCTION objects=[<Object type=PLANET name=MERCURY />, <Object type=PLANET name=NEPTUNE />] start=2020-04-04 03:14:39.063267+02:00 end=None details=None />]
  240. Find events that happen on April 3rd, 2020 (show timezones in UTC-2):
  241. >>> get_events(date(2020, 4, 3), -2)
  242. [<Event type=CONJUNCTION objects=[<Object type=PLANET name=MERCURY />, <Object type=PLANET name=NEPTUNE />] start=2020-04-03 23:14:39.063388-02:00 end=None details=None />]
  243. If there is no events for the given date, then an empty list is returned:
  244. >>> get_events(date(2021, 4, 20))
  245. []
  246. :param for_date: the date for which the events must be calculated
  247. :param timezone: the timezone to adapt the results to. If not given, defaults to 0.
  248. :return: a list of events found for the given date.
  249. """
  250. start_time = get_timescale().utc(
  251. for_date.year, for_date.month, for_date.day, -timezone
  252. )
  253. end_time = get_timescale().utc(
  254. for_date.year, for_date.month, for_date.day + 1, -timezone
  255. )
  256. try:
  257. found_events = []
  258. for fun in [
  259. _search_oppositions,
  260. _search_conjunction,
  261. _search_maximal_elongations,
  262. _search_moon_apogee,
  263. _search_moon_perigee,
  264. _search_earth_season_change,
  265. ]:
  266. found_events.append(fun(start_time, end_time, timezone))
  267. return sorted(flatten_list(found_events), key=lambda event: event.start_time)
  268. except EphemerisRangeError as error:
  269. start_date = translate_to_timezone(error.start_time.utc_datetime(), timezone)
  270. end_date = translate_to_timezone(error.end_time.utc_datetime(), timezone)
  271. start_date = date(start_date.year, start_date.month, start_date.day)
  272. end_date = date(end_date.year, end_date.month, end_date.day)
  273. raise OutOfRangeDateError(start_date, end_date) from error